Parallel selective sampling method for imbalanced and large data classification
نویسندگان
چکیده
Several applications aim to identify rare events from very large data sets. Classification algorithms may present great limitations on large data sets and show a performance degradation due to class imbalance. Many solutions have been presented in literature to deal with the problem of huge amount of data or imbalancing separately. In this paper we assessed the performances of a novel method, Parallel Selective Sampling (PSS), able to select data from the majority class to reduce imbalance in large data sets. PSS was combined with the Support Vector Machine (SVM) classification. PSS-SVM showed excellent performances on synthetic data sets, much better than SVM. Moreover, we showed that on real data sets PSS-SVM classifiers had performances slightly better than those of SVM and RUSBoost classifiers with reduced processing times. In fact, the proposed strategy was conceived and designed for parallel and distributed computing. In conclusion, PSSSVM is a valuable alternative to SVM and RUSBoost for the problem of classification by huge and imbalanced data, due to its accurate statistical predictions and low computational complexity. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملA Selective Sampling Method for Imbalanced Data Learning on Support Vector Machines
The class imbalance problem in classification has been recognized as a significant research problem in recent years and a number of methods have been introduced to improve classification results. Rebalancing class distributions (such as over-sampling or under-sampling of learning datasets) has been popular due to its ease of implementation and relatively good performance. For the Support Vector...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 62 شماره
صفحات -
تاریخ انتشار 2015